Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.100
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130695, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458278

RESUMO

The fibrillogenesis of amyloid ß-protein (Aß) gradually accumulates to form neurotoxic Aß aggregates in the human brain, which is the direct cause of Alzheimer's disease (AD) related symptoms. There are currently no effective therapies for AD. Brazilin, a natural polyphenol, inhibits Aß fibrillogenesis, disrupts the mature fibrils and alleviates the corresponding cytotoxicity, but it also has the high toxic. Therefore, brazilin-7-2-butenoate (B-7-2-B), a brazilin derivative, was designed and synthesized. B-7-2-B exhibited lower toxicity and stronger inhibitory effect on Aß aggregation than brazilin. B-7-2-B could prevent the formation of Aß fibrils and oligomers, and depolymerize pre-formed aggregates in a dose-dependent manner. Furthermore, B-7-2-B prominently alleviated the cytotoxicity and the oxidative stress induced by Aß aggregates in PC12 cells. The protective impacts of B-7-2-B were further demonstrated by using the Caenorhabditis elegans model, including decreasing the extent of Aß aggregation, improving the motility and sensation disorders. Eventually, B-7-2-B was proven to be no apparent damage to worms. In summarize, it can be concluded that B-7-2-B has the potential as a drug for treating AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Ratos , Humanos , Peptídeos beta-Amiloides/toxicidade , Caenorhabditis elegans , Benzopiranos/farmacologia , Células PC12 , Doença de Alzheimer/tratamento farmacológico , Amiloide
2.
Int J Pharm ; 655: 123978, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38458406

RESUMO

Peripheral nerve injury is a critical condition that can disrupt nerve functions. Despite the progress in engineering artificial nerve guidance conduits (NGCs), nerve regeneration remains challenging. Here, we developed new nanofibrous NGCs using polycaprolactone (PCL) and chitosan (CH) containing piracetam (PIR)/vitamin B12(VITB12) with an electrospinning method. The lumen of NGCs was coated by hyaluronic acid (HA) to promote regeneration in sciatic nerve injury. The NGCs were characterized via Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR), tensile, swelling, contact angle, degradation, and drug release tests. Neuronal precursor cell line (PCL12 cell) and rat mesenchymal stem cells derived from bone marrow (MSCs) were seeded on the nanofibrous conduits. After that, the biocompatibility of the NGCs was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and SEM images. The SEM demonstrated that PCL/CH/PIR/VITB12 NGCs had nonaligned, interconnected, smooth fibers. The mechanical properties of these NGCs were similar to rat sciatic nerve. These conduits had an appropriate swelling and degradation rate. The In Vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VITB12 NGCs towards PC12 cells and MSCs. The in vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VIT B12 NGCs towards MSCs and PC12 cells. To analyze functional efficacy, NGCs were implanted into a 10 mm Wistar rat sciatic nerve gap and bridged the proximal and distal stump of the defect. After three months, the results of sciatic functional index (55.3 ± 1.8), hot plate latency test (5.6 ± 0.5 s), gastrocnemius muscle wet weight-loss (38.57 ± 1.6 %) and histopathological examination using hematoxylin-eosin (H&E) /toluidine blue/ Anti-Neurofilament (NF200) staining demonstrated that the produced conduit recovered motor and sensory functions and had comparable nerve regeneration compared to the autograft that can be as the gold standard to bridge the nerve gaps.


Assuntos
Quitosana , Nanofibras , Traumatismos dos Nervos Periféricos , Piracetam , Ratos , Animais , Ratos Wistar , Ácido Hialurônico , Vitamina B 12 , Nervo Isquiático , Tecidos Suporte , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/patologia , Células PC12 , Regeneração Nervosa
3.
Biol Res ; 57(1): 9, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491377

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by death of dopaminergic neurons leading to dopamine deficiency, excessive α-synuclein facilitating Lewy body formation, etc. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin discovered from the eggs of spider L. tredecimguttatus, was previously found to promote the synthesis and release of PC12 cells, showing a great potential as a drug candidate for PD. However, the relevant mechanisms have not been understood completely. The present study explored the mechanism underlying the effects of LETX-VI on dopamine and α-synuclein of PC12 cells and the implications for PD. RESULTS: After PC12 cells were treated with LETX-VI, the level of dopamine was significantly increased in a dose-dependent way within a certain range of concentrations. Further mechanism analysis showed that LETX-VI upregulated the expression of tyrosine hydroxylase (TH) and L-dopa decarboxylase to enhance the biosynthesis of dopamine, and downregulated that of monoamine oxidase B to reduce the degradation of dopamine. At the same time, LETX-VI promoted the transport and release of dopamine through modulating the abundance and/or posttranslational modification of vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT). While the level of dopamine was increased by LETX-VI treatment, α-synuclein content was reduced by the spider toxin. α-Synuclein overexpression significantly decreased the dopamine level and LETX-VI efficiently alleviated the inhibitory action of excessive α-synuclein on dopamine. In the MPTP-induced mouse model of PD, application of LETX-VI ameliorated parkinsonian behaviors of the mice, and reduced the magnitude of MPTP-induced α-synuclein upregulation and TH downregulation. In addition, LETX-VI displayed neuroprotective effects by inhibiting MPTP-induced decrease in the numbers of TH-positive and Nissl-stained neurons in mouse brain tissues. CONCLUSIONS: All the results demonstrate that LETX-VI promotes the synthesis and release of dopamine in PC12 cells via multiple mechanisms including preventing abnormal α-synuclein accumulation, showing implications in the prevention and treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Camundongos , Animais , Dopamina/metabolismo , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Células PC12 , Camundongos Endogâmicos C57BL
4.
ACS Chem Neurosci ; 15(7): 1388-1414, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525886

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aß and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aß1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.


Assuntos
Doença de Alzheimer , Ácidos Cumáricos , Camundongos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inflamassomos , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peróxido de Hidrogênio , Metais , Células PC12 , Acetilcolinesterase/metabolismo
5.
Altern Lab Anim ; 52(2): 94-106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445454

RESUMO

Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 µM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.


Assuntos
Benzoquinonas , Metanfetamina , Ratos , Animais , Células PC12 , Espécies Reativas de Oxigênio/farmacologia , Metanfetamina/toxicidade , Dopamina/farmacologia , Apoptose , Glutationa/farmacologia , Diferenciação Celular
6.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427110

RESUMO

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Assuntos
Neoplasias das Glândulas Suprarrenais , Polímeros de Fluorcarboneto , Doença de Parkinson , Ratos , Animais , Catecolaminas/metabolismo , Células PC12 , Fator de Crescimento Neural , Avaliação Pré-Clínica de Medicamentos , Neurotransmissores
7.
Bioorg Med Chem ; 101: 117637, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368633

RESUMO

Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.


Assuntos
Fatores de Crescimento Neural , Quinolinas , Animais , Ratos , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Células PC12/efeitos dos fármacos , Fosforilação
8.
Mol Biol Rep ; 51(1): 360, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402341

RESUMO

BACKGROUND: The involvement of malfunctioning glutamate systems in various central nervous system (CNS) disorders is widely acknowledged. Urolithin B, known for its neuroprotective and antioxidant properties, has shown potential as a therapeutic agent for these disorders. However, little is known about its protective effects against glutamate-induced toxicity in PC12 cells. Therefore, in this study, for the first time we aimed to investigate the ability of Urolithin B to reduce the cytotoxic effects of glutamate on PC12 cells. METHODS: Different non-toxic concentrations of urolithin B were applied to PC12 cells for 24 h before exposure to glutamate (10 mM). The cells were then analyzed for cell viability, intracellular reactive oxygen species (ROS), cell cycle arrest, apoptosis, and the expression of Bax and Bcl-2 genes. RESULTS: The results of MTT assay showed that glutamate at a concentration of 10 mM and urolithin B at a concentration of 114 µM can reduce PC12 cell viability by 50%. However, urolithin B at non-toxic concentrations of 4 and 8 µM significantly reduced glutamate-induced cytotoxicity (p < 0.01). Interestingly, treatment with glutamate significantly enhanced the intracellular ROS levels and apoptosis rate in PC12 cells, while pre-treatment with non-toxic concentrations of urolithin B significantly reduced these cytotoxic effects. The results also showed that pre-treatment with urolithin B can decrease the Bax (p < 0.05) and increase the Bcl-2 (p < 0.01) gene expression, which was dysregulated by glutamate. CONCLUSIONS: Taken together, urolithin B may play a protective role through reducing oxidative stress and apoptosis against glutamate-induced toxicity in PC12 cells, which merits further investigations.


Assuntos
Cumarínicos , Ácido Glutâmico , Fármacos Neuroprotetores , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Apoptose , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia
9.
Tissue Cell ; 87: 102322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367324

RESUMO

Ribisin A has been shown to have neurotrophic activity. The aim of this study was to evaluate the neuroprotective effect of ribisin A on injured PC12 cells and elucidate its mechanism. In this project, PC12 cells were induced by H2O2 to establish an injury model. After treatment with ribisin A, the neuroprotective mechanism of ribisin A was investigated by methyl tetrazolium (MTT) assay, Enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, fluorescent probe analysis, and western blot. We found that ribisin A decreased the rate of lactate dehydrogenase (LDH) release, increased cellular superoxide dismutase (SOD) level, decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Ca2+ expression and reactive oxygen species (ROS). Moreover, ribisin A significantly increased mitochondrial membrane potential (MMP) and inhibited apoptosis of PC12 cells. Meanwhile, ribisin A activated the phosphorylation of ERK1/2 and its downstream molecule CREB by upregulating the expression of Trk A and Trk B, the upstream molecules of the ERK signaling pathway.


Assuntos
Catecóis , Peróxido de Hidrogênio , Fármacos Neuroprotetores , Ratos , Animais , Células PC12 , Peróxido de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fármacos Neuroprotetores/farmacologia , Apoptose , Estresse Oxidativo , Sobrevivência Celular
10.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338864

RESUMO

Orexins are neuronal peptides that play a prominent role in sleep behavior and feeding behavior in the central nervous system, though their receptors also exist in peripheral organs, including the adrenal gland. In this study, the effects of orexins on catecholamine synthesis in the rat adrenomedullary cell line PC12 were investigated by focusing on their interaction with the adrenomedullary bone morphogenetic protein (BMP)-4. Orexin A treatment reduced the mRNA levels of key enzymes for catecholamine synthesis, including tyrosine hydroxylase (Th), 3,4-dihydroxyphenylalanie decarboxylase (Ddc) and dopamine ß-hydroxylase (Dbh), in a concentration-dependent manner. On the other hand, treatment with BMP-4 suppressed the expression of Th and Ddc but enhanced that of Dbh with or without co-treatment with orexin A. Of note, orexin A augmented BMP-receptor signaling detected by the phosphorylation of Smad1/5/9 through the suppression of inhibitory Smad6/7 and the upregulation of BMP type-II receptor (BMPRII). Furthermore, treatment with BMP-4 upregulated the mRNA levels of OX1R in PC12 cells. Collectively, the results indicate that orexin and BMP-4 suppress adrenomedullary catecholamine synthesis by mutually upregulating the pathway of each other in adrenomedullary cells.


Assuntos
Proteínas Morfogenéticas Ósseas , Catecolaminas , Orexinas , Animais , Ratos , Proteínas Morfogenéticas Ósseas/metabolismo , Catecolaminas/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , RNA Mensageiro , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Células PC12/metabolismo
11.
Spine (Phila Pa 1976) ; 49(8): 583-593, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38167229

RESUMO

STUDY DESIGN: Animal and cellular models of spinal cord injury (SCI) were used to explore the role of miR-335 in regulating cell viability and apoptosis. OBJECTIVE: To investigate the role and the target of miR-335 in SCI. SUMMARY OF BACKGROUND: Based on analysis of the GSE19890 data set, miR-335 was identified as a downregulated microRNA (miRNAs) following SCI. Thus, this study investigated whether downregulation of miR-335 is important in the pathological process of SCI. MATERIALS AND METHODS: The GSE19890 data set investigating the expression profiles of miRNAs after SCI was downloaded from the GEO database. GSE45006 and GSE4550 data sets were used to identify differentially expressed genes between normal samples and SCI samples. The targets of rno-miR-335 were predicted using the TargetScan database.An experimental model of SCI was established, and agomir-miR-335 was intrathecally injected into rats with SCI. Functional recovery was evaluated by assessment of Basso-Beattie-Bresnahan scores and spinal cord water content and performing hematoxylin-eosin staining. Apoptosis was estimated by TUNEL staining. The H 2 O 2 -treated PC12 cells were used as in vitro models of SCI. Cell viability and apoptosis were examined by cell counting kit-8 and flow cytometry. Caspase-3 expression was evaluated by immunofluorescence staining. Levels of miRNAs and mRNAs were measured by reverse transcriptase quantitative polymerase chain reaction. Western blotting was performed to measure Bcl-2, Bax, cleaved caspase-3, and specificity protein 1 (SP1) protein levels. RESULTS: For in vivo studies, miR-335 was downregulated following SCI, and agomir-miR-335 delivery improved functional recovery through suppressing neuronal apoptosis by inactivating the SP1-Bax/Bcl-2/caspase-3 signaling. During in vitro analysis, miR-335 protected PC12 cells against H 2 O 2 -induced damage by negatively regulating the SP1-Bax/Bcl-2/caspase-3 signaling axis. Moreover, upregulation of SP1 abolished the apoptosis suppressive effects of miR-335 upregulation. CONCLUSION: MiR-335 ameliorates locomotor impairment in rats with SCI through the suppression of neuronal apoptosis by inactivating SP1-Bax/Bcl-2/caspase-3 signaling.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Células PC12 , Caspase 3/metabolismo , Medula Espinal , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Apoptose , MicroRNAs/genética , Recuperação de Função Fisiológica
12.
ACS Chem Neurosci ; 15(3): 656-670, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38206798

RESUMO

Ganglioside GAA-7 exhibits higher neurite outgrowth than ganglioside GM1a and most echinodermatous gangliosides (EGs) when tested on neuron-like rat adrenal pheochromocytoma (PC12) cells in the presence of nerve growth factor (NGF). The unique structure of GAA-7 glycan, containing an uncommon sialic acid (8-O-methyl-N-glycolylneuraminic acid) and sialic acid-α-2,3-GalNAc linkage, makes it challenging to synthesize. We recently developed a streamlined method to chemoenzymatically synthesize GAA-7 glycan and employed this modular strategy to efficiently prepare a library of GAA-7 glycan analogues incorporating N-modified or 8-methoxyl sialic acids. Most of these synthetic glycans exhibited moderate efficacy in promoting neuronal differentiation of PC12 cells. Among them, the analogue containing common sialic acid shows greater potential than the GAA-7 glycan itself. This result reveals that methoxy modification is not essential for neurite outgrowth. Consequently, the readily available analogue presents a promising model for further biological investigations.


Assuntos
Ácido N-Acetilneuramínico , Neurônios , Ratos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neurônios/metabolismo , Gangliosídeos/metabolismo , Polissacarídeos/metabolismo , Células PC12 , Neuritos/metabolismo
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 119-128, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293983

RESUMO

OBJECTIVE: To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. METHODS: EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 µg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 µmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL- 6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. RESULTS: The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P < 0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells (P < 0.05). CONCLUSION: EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Ratos , Animais , Microglia/metabolismo , Lipopolissacarídeos/efeitos adversos , Células PC12 , Interleucina-10 , Peróxido de Hidrogênio/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ectoderma/metabolismo , Estresse Oxidativo , Traumatismos da Medula Espinal/metabolismo , RNA Mensageiro/metabolismo
14.
Eur J Med Chem ; 266: 116108, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218125

RESUMO

Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Ratos , Animais , Humanos , Neuritos , Gangliosídeo G(M3)/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Células PC12 , Neuroblastoma/metabolismo
15.
Eur J Pharm Sci ; 194: 106696, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199443

RESUMO

Parkinson's disease is the second most prevalent age-related neurodegenerative disease and disrupts the lives of people aged >60 years. Meanwhile, single-target drugs becoming inapplicable as PD pathogenesis diversifies. Mitochondrial dysfunction and neurotoxicity have been shown to be relevant to the pathogenesis of PD. The novel synthetic compound J24335 (11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime), which has been researched similarly to J2326, has the potential to be a multi-targeted drug and alleviate these lesions. Therefore, we investigated the mechanism of action and potential neuroprotective function of J24335 against 6-OHDA-induced neurotoxicity in mice, and in PC12 cell models. The key target of action of J24335 was also screened. MTT assay, LDH assay, flow cytometry, RT-PCR, LC-MS, OCR and ECAR detection, and Western Blot analysis were performed to characterize the neuroprotective effects of J24335 on PC12 cells and its potential mechanism. Behavioral tests and immunohistochemistry were used to evaluate behavioral changes and brain lesions in mice. Moreover, bioinformatics was employed to assess the drug-likeness of J24335 and screen its potential targets. J24335 attenuated the degradation of mitochondrial membrane potential and enhanced glucose metabolism and mitochondrial biosynthesis to ameliorate 6-OHDA-induced mitochondrial dysfunction. Animal behavioral tests demonstrated that J24335 markedly improved motor function and loss of TH-positive neurons and dopaminergic nerve fibers, and contributed to an increase in the levels of dopamine and its metabolites in brain tissue. The activation of both the CREB/PGC-1α/NRF-1/TFAM and PKA/Akt/GSK-3ß pathways was a major contributor to the neuroprotective effects of J24335. Furthermore, bioinformatics predictions revealed that J24335 is a low toxicity and highly BBB permeable compound targeting 8 key genes (SRC, EGFR, ERBB2, SYK, MAPK14, LYN, NTRK1 and PTPN1). Molecular docking suggested a strong and stable binding between J24335 and the 8 core targets. Taken together, our results indicated that J24335, as a multi-targeted neuroprotective agent with promising therapeutic potential for PD, could protect against 6-OHDA-induced neurotoxicity via two potential pathways in mice and PC12 cells.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Ratos , Camundongos , Animais , Oxidopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Dopamina , Neurônios Dopaminérgicos
16.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255846

RESUMO

PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-ß cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.


Assuntos
Neoplasias das Glândulas Suprarrenais , Animais , Ratos , Células PC12 , Diferenciação Celular , Estimulação Física , Proteínas Quinases p38 Ativadas por Mitógeno
17.
Talanta ; 271: 125637, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237284

RESUMO

Neuronal activity can be modulated by mechanical stress in the central nervous system (CNS) in neurodegenerative diseases, for example Alzheimer's disease. However, the impact of mechanical stress on chemical signal transmission, especially the storage and release of neurotransmitter in neuron vesicles, has not been fully clarified. In this study, a nanotip conical carbon fiber microelectrode (CFME) and a disk CFME are placed in and on a cell, respectively. The nanotip conical CFME functions for both the mechanical stress and the quantification of transmitter storage in single vesicles, while the disk CFME is used to monitor the transmitter release during exocytosis induced by mechanical stress at the same cell. By comparing the vesicular transmitter storage with its release during mechanical stress-induced exocytosis at the same cell, we find the release ratio of transmitter in chromaffin cells varies from 27 % to 100 %, while for PC12 cells from 30 % to 100 %. Our results indicate that the exocytosis of cells responding to mechanical stress shows individual difference obviously, with a significant population exhibiting partial release mode. The variation of Ca2+ channels and mechanosensitive ion channels on cell membrane may both contribute to this variation. Our discovery not only shows mechanical stress can change the transmission of cellular chemical signals at the vesicle level, but also provides an important reference perspective for the study of nervous system regulation and nervous system diseases.


Assuntos
Catecolaminas , Células Cromafins , Ratos , Animais , Estresse Mecânico , Células Cromafins/metabolismo , Células PC12 , Exocitose/fisiologia
18.
Toxicol Ind Health ; 40(4): 145-155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265950

RESUMO

During recent decades, the application of zirconium dioxide nanoparticles (ZrO2-NP) has been expanded in various fields ranging from medicine to industry. It has been shown that ZrO2-NP has the potential to cross the blood-brain barrier (BBB) and induce neurotoxicity. In the current study, we investigated the in vivo neurotoxicity, as well as, the cellular mechanism of ZrO2-NP toxicity on two neuronal-like cell lines, PC12 and N2a. PC12 and N2a cells were exposed to increasing concentrations of ZrO2-NP (0-2000 µg/ml) for 48 h. The apoptotic effect of ZrO2-NP was determined using annexin V/propidium iodide double staining (by flow cytometry), and western blot analysis of relative apoptotic proteins, including caspase-3, caspase-9, bax, and bcl2. Based on our results, ZrO2-NP at concentrations of 250-2000 µg/mL increased both early and late-stage apoptosis in a concentration-dependent manner. Moreover, the expressions of cleaved-caspase-3 and -9 proteins and the bax/bcl2 ratio were significantly increased. In addition, oral administration of ZrO2-NP (50 mg/kg) to male Wistar rats for 28 days led to the loss of neuronal cells in the cerebral cortex. Taken together, our findings highlighted the role of apoptosis on cytotoxicity induced by ZrO2-NP.


Assuntos
Nanopartículas , Proteínas Proto-Oncogênicas c-bcl-2 , Zircônio , Ratos , Masculino , Animais , Caspase 3 , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Neurônios , Sobrevivência Celular
19.
Ecotoxicol Environ Saf ; 269: 115786, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061083

RESUMO

Beauvericin (BEA), a naturally occurring cyclic peptide with good pharmacological activity, has been widely explored in anticancer research. Although BEA is toxic, studies have demonstrated its antioxidant activity. However, to date, the antioxidant mechanisms of BEA remain unclear. Herein, we conducted a comprehensive and detailed study of the antioxidant mechanism of BEA using an untargeted metabolomics approach, subsequently validating the results. BEA concentrations of 0.5 and 1 µM significantly inhibited H2O2-induced oxidative stress (OS), decreased reactive oxygen species levels in PC-12 cells, and restored the mitochondrial membrane potential. Untargeted metabolomics indicated that BEA was primarily involved in lipid-related metabolism, suggesting its role in resisting OS in PC-12 cells by participating in lipid metabolism. BEA combated OS damage by increasing phosphatidylcholine, phosphatidylethanolamine, and sphingolipid levels. In the current study, BEA upregulated proteins related to the PI3K/AKT/mTOR pathway, thereby promoting cell survival. These findings support the antioxidant activity of BEA at low concentrations, warranting further research into its pharmacological effects.


Assuntos
Antioxidantes , Apoptose , Depsipeptídeos , Metabolismo dos Lipídeos , Antioxidantes/farmacologia , Sobrevivência Celular , Depsipeptídeos/farmacologia , Peróxido de Hidrogênio/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Animais , Ratos
20.
Adv Mater ; 36(9): e2308344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921116

RESUMO

Nanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved. Here, this work uses synthetic vesicles and DNA nanorulers to reconstruct in vitro the vesicle assemblies that mimic vesicle clusters in living cells. DNA nanorulers program the lateral distance of vesicle assemblies from 3 to 10 nm. This work uses the carbon fiber nanoelectrode (CFNE) to amperometric monitor artificial vesicle assemblies with sub-10 nm interspaces, and obtain a larger proportion of complex events. This work resolves the heterogeneity of individual vesicle release kinetics in PC12 cells with the temporal resolution down to ≈0.1 ms. This work further analyzes the aggregation state of intracellular vesicles and the exocytosis of living cells with electrochemical vesicle cytometry. The results indicate that the exocytosis of vesicle clusters is critically dependent on the size of clusters. This technology has the potential as a tool to shed light on the heterogeneity analysis of vesicle populations.


Assuntos
Comunicação , DNA , Animais , Ratos , Cinética , Células PC12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...